Главная  Электроснабжение 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [ 11 ] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92]

а) и


схемы инверторов позволяют формировать напряжение, близкое к синусоидальной форме - аппроксимированное ступенями (рис. 3.3, б). Оба типа таких инверторов характерны для ИБП малой мощности и пригодны для работы с импульсными блоками питания. Инверторы ИБП типа line-interactive формируют напряжение синусоидальной формы (рис. 3.3, в) с низким содержанием гармоник (как правило, коэффициент искажения синусоидальности кривой напряжения Ки < 3%). Такие инверторы пригодны для питания всех типов нагрузок - от импульсных блоков питания до двигателей. Как правило, форма напряжения инвертора и Ки указываются в каталожных данных ИБП.

Типичный диапазон мощностей ИБП типов off-line и line-interactive от 250 ВА до3...5кВА.

Источники бесперебойного питания с режимом работы on-line выпускаются нескольких типов (по принципам преобразования энергии). Существуют четыре типа on-line ИБП:

- с одиночным преобразованием;

- с дельта-преобразованием;

- феррорезонансные ИБП;

- с двойным преобразованием.

Принцип одиночного преобразования (single conversion) (рис. 3.4) заключается в следующем. В цепь между питающей сетью и нагрузкой вю1ючен дроссель, к выходу которого подключен инвертор. Инвертор в данной схеме является реверсивным и способен преобразовывать постоянное напряжение в переменное и наоборот. Помимо питания нагрузки в автономном режиме вторым назначением инвертора является регулирование напряжения на стороне нагрузки при отклонениях в питающей сети.

У ИБП данного типа КПД весьма высок и может достигать 96%. Однако имеются некоторые недостатки, например низкое значение входного коэффициента мощности (coscp ~ 0,6), при этом он меняется при изменении как напряжения сети, так и характера нагрузки. Кроме того, при малых нагрузках данные ИБП потребляют существенные реактивные токи, соизмери-

Рис. 3.3. Форма выходного напряжения инверторов: а) ступенчатая; б) апроксимированная синусоида; в) синусоидальная

Ключ

Питание

Дроссель

"УЛЛЛЛЛЛЛГ

Нагрузка

Батарея


Инвертор

Рис.3.4. ИБП одиночного преобразования (single conversion UPS)



мые с номинальным током установки. Среди современных ИБП последних моделей подобный тип не встречается, поскольку на смену ему пришла технология дельта-преобразования, являющаяся развитием технологиии одиночного преобразования.

Принцип дельта-преобразования (delta conversion) основан на применении в схеме ИБП так называемого дельта-трансформатора (рис. 3.5). Дельта-трансформатор представляет собой дроссель с обмоткой подмагничивания, которая позволяет управлять током в основной обмотке (аналогично принципу магнитного усилителя). В ИБП применяются два постоянно работающих инвертора. Один служит для управления дельта-трансформатором и, соответственно, регулировки входного тока и компенсации некоторых помех. Его мощность составляет 20% от мощности второго инвертора, работающего на нагрузку. Второй инвертор, мощность которого определяет мощность ИБП, формирует выходную синусоиду, обеспечивая коррекцию отклонений формы входного напряжения, а также питает нагрузки от батарей при работе ИБП в автономном режиме. Благодаря такой схеме обеспечивается возможность плавной загрузки входной сети при переходе из автономного режима работы от батарей к работе от сети (режим on-line), а также высокая перегрузочная способность - до 200% в течение 1 мин.

Ключ

Питание

Дельта-трансформатор

Инвертор

Нагрузка -►

\ Л/

Инвертор

Батарея

Рис.3.5. ИБП дельта-преобразования (delta conversion UPS)

При загрузке ИБП данного типа на 100% номинальной мощности коэффициент полезного действия составляет 96,5%. Однако высокие показатели данный тип ИБП обеспечивает при следующих условиях: отсутствии отклонений и искажений напряжения в питающей сети, нагрузке ИБП, близкой к номинальной и являющейся линейной. В реальных условиях показатели данного типа ИБП (КПД = 90,8...93,5%) приближаются к показателям ИБП с двойным преобразованием, рассмотренного ниже. Реальное достижение высоких заявленных значений КПД ИБП с дельта-преобразованием возможно при широком внедрении импульсных блоков питания с коррекцией коэффициента мощности. Это означает, что нагрузка приобретает преимущественно активный характер и создаются условия для проявления высоких энергетических характеристик ИБП. В последнее время ко-



эффициент моишости новых блоков питания достиг значения 0,92...0,97 [8]. Другим достоинством ИБП с дельта-преобразованием является высокий коэффициент мощности самого устройства, близкий к ]. Это облегчает совместную работу ИБП и ДГУ. На основе ИБП с дельта-преобразованием строятся мощные централизованные СБЭ с избыточным резервированием. Естественно, возможны также схемы с единичными ИБП. Диапазон мощностей ИБП этого типа 10...480 кВА. Возможно параллельное объединение до 8 ИБП для работы на общую нагрузку в одной СБЭ. Данный тип ИБП является основной альтернативой типу ИБП с двойным преобразованием.

Феррорезонансные ИБП названы так по применяемому в них феррорезонанс-ному трансформатору. В основу принципа его работы положен эффект феррорезо-нанса, применяемый в щироко распространенных стабилизаторах напряжения. При нормальной работе трансформатор выполняет функции стабилизатора напряжения и сетевого фильтра. В случае потери питания феррорезонансный трансформатор обеспечивает нагрузку питанием за счет энергии, накопленной в его магнитной системе. Интервала времени длительностью 8... 16 мс достаточно для запуска инвертора, который уже за счет энергии аккумуляторной батареи продолжает поддерживать нагрузку. Коэффициент полезного действия ИБП данного типа соответствует КПД систем двойного преобразования (не превыщает 93%). Данный тип источников бесперебойного питания щирокого распространения не получил, хотя обеспечивает очень высокий уровень защиты от высоковольтных выбросов и высокий уровень защиты от электромагнитных щумов. Предел мощности ИБП данного типа не превыщает 18 кВА.

Наиболее пшроко распространен тип ИБП двойного преобразования (double conversion UPS), представленный на рис. 3.6.

Байпас

Питание

Выпрямитель


Нагрузка

Инвертор

Батарея

Рис. 3.6. ИБП двойного преобразования (double conversion UPS)

Зачастую в качестве синонима двойного преобразования употребляют on-line. Это не вполне верно, так как к группе ИБП типа on-line относятся и другие схемы ИБП. В ИБП этого типа вся потребляемая энергия поступает на выпрямитель и



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [ 11 ] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92]

0.001