Главная  Оптические магистрали 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [ 150 ] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165]

ЮОООи


Тогда

/( =

\1ei

1нВт ImhBt 1мВт

ВОдВм ЗОдВм ОаВм

Принимаемая аптичесная мощность

Рнс. 17,6. Завнсн-мость отношения сигнал/шум от уровня принимаемой оптической мощности

(17.4.5)

На рис. 17.6 изображена зависимость К. от Фо для случая т 0,5, Л - 0,5 А/Вт, f~ 1 и А/ == 5 МГц, а величина (/ш)" играет роль параметра. Значения (/jv) можно сравнить со

значениями, приведенными в примере § 14.6. Из рис. 17.6 следует, что шум малошумящих систем даже в случае применения р-г-п-фотоднодов ограничен предельным уровнем квантового пума.

Ранее была рассмотрена передача телевизионных сигналов с помощью модуляции по интенсивности в полосе спектра модулирующего сигнала для замкнутой телевизионной системы (CCTV), применяемой для контроля за работой железной дороги (Японская национальная железная дорога и фирма Мицубиси). Были использованы лазерный диод на InGaAsP/InP, работающий на длине волны 1,29 мкм, многомодовое градиентное волокно, а также уО-1-п-фотодиод на InGaAsP/InP. Цени обратной связи и предварительного искажения сигнала улучшили линейность источника излучения, так что удалось получить коэффициент модуляции выше 0.5. Затухание в линии длиной 16,5 км с семью разъемами составляло 27.3 дБ. Мощность вводимого в волокно оптического сигнала составляла - 7 дБм, а уровень принимаемой мощности - 34,3 дБм обеспечивал отношение сигнал-шум, равное 42,3 дБ, что было вполне удовлетворительно. Поскольку ширина полосы пропускания волокна не являлась ограничением, для снижения до минимума модального шума можно было использовать широкополосный лазерный источник, работающий в режиме многих продольных мод.

17.4.3. Использование частотно-модулированной поднесущей

В § 16.5 было показано, что модуляция частоты повторения импульсов оптического источника излучения дает возможность легко реализовать аналоговую оптическую систему передачи данных на звуковых частотах. Разумеется, этот метод используется как в канализированных, так и неканализированных системах связи. Его можно распространить на передачу видеосигналов, исгюльзуя более высокую часто-



ту повторения импульсов поднесуще!*. Сообщалось об оптических системах, успешно осуществляющих передачу информации при частоте повторения импульсов в несколько сот мегагерц. В данном случае можно получить высокое отношение сигнал-шум при меньшей мощности принимаемого оптического сигнала по сравнению с модуляцией по интенсивности в полосе спектра модулирующего сигнала. Кроме того, требуется меньшая полоса пропускания канала для передачи любого сигнала по сравнению с системами связи, использующими ИКМ, характеристики которых ограничены дисперсией, а не затуханием оптического волокна. Системы с частотно-импульсной модуляцией имеют лучшие характеристики, поскольку она дает возможность менять требования к ширине полосы пропуска1Шя канала при различном отношении сигнал-шум. Можно также использовать частотное разделение каналов, если нет ограничения ширины полосы пропускания системы, обусловленного дисперсией. Результирующая линейность канала зависит от линейностей модулирующих и демодулирующих схем. Как правило, нужно применять лазерные источники излучения, работающие на длине волны 0,85 мкм, поскольку дисперсия материала ограничивает дальность связи. При использовании многомодовых волокон в таком случае серьезной проблемой становится модальный шум. Это противоречие можно разрешить, используя в качестве источника излучения либо светодиод на 1,3 мкм, и в этом случае дисперсия не будет проблемой, либо одномодовые волокна.

Подробный анализ каналов связи с ЧИМ затруднителен, поскольку она связана с нелинейными процессами. Кроме того, существует несколько различных видов используемой модуляции (модуляция импульсной последователь1Юсти гю частоте или фазе; сохранение гю-стоянными либо длительности импульса, либо рабочего цикла при изменении частоты или фазы; частотная или фазовая модуляция синусоидальной поднесущей), а также различные способы осуществления модуляции и демодуляции. Поэтому здесь не делается попытка количественно оценить ожидаемые шумовые характеристики оптической линии с ЧИМ. Достаточно сказать, что они аналогичны характеристикам обычных радиоканалов с частотной модуляцией, которые описаны в большинстве учебников по связи (см. например, {1.3]). Заметим, что величина К, определяемая выражениями (14.4.10), (14.5.14) и (17.4.5) характеризует отношение мощности несущего колебания к мощности шума в полосе пропускания канала. Использование широкополосной частотной модуляции, при которой девиация частоты в большой степени сопоставима с шириной спектра сигнала, приводит к значительному уменьшению требуемого отношения сигнал-шум, при условии, что отношение мощности несущей к мощности шума превышает некоторое пороговое значение, достаточное для того, чтобы обеспечить надежную регенерацию импульса.

В ряде экспериментальных систем было обнаружено, что для высококачественного приема телевизионных изображений (требуемое отношение сигнал-шум л; 55 дБ) необходимо, чтобы уровень мощности



принимаемого оптического сигнала составлял почти 1 мкВт (-30 дБм). По сравнению с прямой модуляцией по интенсивности в полосе спектра модулирующего сигнала можно получить повышение отношения сигнал-шум за 10 ... 15 дБ.

Ниже рассмотрим передачу видеосигналов, поскольку считаем этот случай наиболее вероятной областью применения оптических линий передачи с ЧИМ длиной до 10 км. Такие линии можно использовать в местных сетях связи или абонентских линиях от централизованной приемной антенны для передачи сигналов телевизионного вещания (общая телевизионная антенна, кабельное телевидение), причем возможен прием программ, транслируемых через спутники связи.

17.5. ПРИМЕНЕНИЕ ВОЛС В ЛОКАЛЬНЫХ СЕТЯХ СВЯЗИ

Увеличение числа используемых в различных областях хозяйственной деятельности распределенных компьютерных систем, содержащих большое число ЭВМ, приводит к необходимости создания надежных и эффективных локальных сетей связи для цифровой передачи данных. На многих промышленных предприятиях для управления и контроля за технологическими процессами могут потребоваться сети, содержащие до сотни узлов, способные обрабатывать данные со скоростью 1 Мбит/с и более при расстоянии между узлами до 1 км. Аналогичные требования имеют место в военной области, где сложные системы вооружения и связи, обычно управляемые местным компьютером, должны быть связаны единой сетью команд, управления и связи. В будущем потребуются учрежденческие линии связи с широкой полосой пропускания для передачи данных между отдельными рабочими местами. Появляется необходимость в распределении данных в пределах большой главной компьютерной системы, в частности, при передаче данных между блоками центрального процессора или при вводе и выводе данных в ЗУ с быстрой выборкой или же при обмене данными между центральным процессором и удаленными периферийными устройствами. Во многих таких системах трасса передачи проходит в неблагоприятных условиях воздействия химически активных веществ и электромагнитных помех. В таких случаях очевидны существенные преимущества ВОЛС, приведенные в табл. 1.1 и многократно рассмотренные выше.

Всегда можно сконструировать оптическую линию связи для замены существующей электрической таким образом, чтобы принимаемый и передаваемый электрические сигналы на оконечных устройствах оставались такими же, как и в прежней системе. В этом случае оптическую линию называют «прозрачной» или «невидимой». Гораздо большую выгоду можно получить, если разрабатывать систему связи, имея в виду с самого начала малые физические размеры и большую информационную пропускную способность оптического волокна. Однако трудность создания оптических линий какой-нибудь другой топологии, кроме соединительной, несколько ограничивает использование волок-



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [ 150 ] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165]

0.0013