Главная  Введение в электрику 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [ 162 ] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211]

Глава 31.

ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

ЦЕЛИ

После иззения этой главы студент должен быть в состоянии:

• Описать двоичную систему счисления.

• Перечислить значения разрядов для каждого бита двоичного числа.

• Преобразовывать двоичные числа в десятичные.

• Преобразовывать десятичные числа в двоичные.

• Преобразовывать десятичные числа в двоично-десятичный код.

• Преобразовывать числа в двоично-десятичном коде в десятичные.

Система счисления - это не более, чем код. Для каждой отдельной величины существует приписанный ей символ. Когда код известен, можно выполнять вычисления. Это возможно с помощью арифметики и высшей математики.

Простейшей системой счисления является двоичная. Двоичная система содержит только две цифры - О и 1. Эти цифры имеют такое же значение, как и в десятичной системе счисления.

Двоичная система счисления используется в цифровых и микропроцессорных цепях благодаря ее простоте. Двоичные данные представляются двоичными цифрами, называемыми битами. Термин бит означает двоичная цифра (разряд) (Мпагу digit).

ЗМ. ДВОИЧНЫЕ ЧИСЛА

Десятичная система счисления называется системой с основанием 10, поскольку она использует десять цифр от О до 9. Двоичная система - это система с основанием два.



Глава 31

Таблица десятичных и двоичных чисел

Двоичное число

Десятичное число

Рис. 31-1. Десятичные числа и эквивалентные двоичные числа.

поскольку она использует две цифры, О и 1. Положение О или 1 в двоичном числе показывает их значение в числе и называется значением разряда или его весом. Значения разрядов двоичного числа увеличиваются как степени 2.



31-1. Вопросы

1. В чем преимущество двоичной системы счисления перед десятичной при использовании в цифровых цепях?

2. Как определить наибольшее значение двоичного числа при заданном числе разрядов?

3. Каково наибольшее значение двоичного числа с:

а. 4 битами,

б. 8 битами,

в. 12 битами,

г. 16 битами.

Значение разряда

32 16 8 4 2 1 Степень 2 2 2* 2 2 2i 2"

Счет в двоичной системе начинается с чисел О и 1. Как и в десятичной системе счисления, каждая двоичная цифра отличается от предыдущей на единицу. Сумма единицы и нуля дает единицу, а сумма двух единиц дает нуль, и при этом прибавляется единица в старшем разряде. На рис. 31-1 показана последовательность двоичных чисел, образованная по описанному алгоритму.

Для определения наибольшего значения, которое может быть представлено данным количеством разрядов с основанием 2, используйте следующую формулу:

Наибольшее число = 2" - 1,

где п - число битов (или число использованных значений разрядов).

ПРИМЕР: два бита могут быть использованы для счета от О до 3, так как

2" - 1 = 22 - 1 = 4 - 1 = 3.

Четыре бита необходимы для счета от О до 15, так как

2" - 1 = 2* - 1 = 16 - 1 = 15.



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [ 162 ] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211]

0.0012