Главная  Компьютер 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [ 12 ] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]

I -rrS »--V- i


Рис. 3.4. Конструкция АЦП ADC10 и ADC12

Эта схема является хорошим примером применения миниатюрных аналого-цифровых преобразователей с выводом информации в последовательном коде, рассмотренных в главе 2. Оригинальность схемы состоит в том, что опорное напряжение в ней составляет 2,5 В, а входное напряжение делится на 2 для получения полной шкалы устройства в 0-5 В. Подобная хитрость позволяет, кроме того, весьма эффективно и с малыми затратами защитить вход АЦП от перегрузок, а также обойтись для питания устройства напряжением около 5 В, получаемым от цепей информационных данных параллельного порта. Для этого на соответствующих выходах порта программно устанавливаются напряжения высокого логического уровня.

Аналого-цифровые преобразователи ADC 10 и ADC 12 различаются между собой разрядностью (соответственно 8 и 12 разрядов) и входным сопротивлением (соответственно 200 кОм и 66 кОм). Кроме этого, модели можно различить по цвету корпуса. При практическом применении следует учитывать указанные величины входных сопротивлений, если планируется использовать стандартные щупы с делителями.

На рис. 3.3 приведена упрощенная принципиальная схема АЦП ADC 10 и ADC 12, а на рис. 3.4 показана конструкция этих изделий. При очевидной простоте технического решения возможности измерительной системы в значительной мере определяются ее программным обеспечением.



ДРУГИЕ КОМПОНЕНТЫ ЭТОЙ СЕРИИ

Компания PICO Technology, расположенная в области, которую обыкновенно называют английской Кремниевой Долиной (в окрестностях Кембриджа), уже много лет специализируется на приборостроении и системах сбора и обработки данных.

Изделия ADC 10 и ADC 12 - лишь два образца из всего многообразия продуктов, разработанных компанией, хотя оригинальность названных приборов сделала их бестселлерами.

Кроме этих двух одноканальных устройств надо отметить ADC 11 (11-канальный, 10-разрядный), ADC 16 (8-канальный, 8- или 16-разрядный), ADC 100 (2-канальный, 12-разрядный), ADC 200 (2-канальный, 8-разрядный, с частотой дискретизации до 100 МГц).

Представляется заманчивым сразу предпочесть ADC 12, ане ADC 10, и получить разрешение в 4096 точек по приемлемой цене. Но не все так просто!

Прежде всего, надо отметить, что передача 12 битов в последовательном коде занимает как минимум на 50% больше времени, чем передача 8 бит. От этого сильно зависит верхний предел частоты дискретизации, а он должен быть как можно большим... Кроме того, следует учесть, что точность других компонентов (хотя бы входного делителя) составляет 1 %. Это соответствует разрешению в 256 точек (8 разрядов), но недостаточно для точности 0,025%, соответствующей разрешению в 4096 точек (12 разрядов).

Большинство осциллографов с цифровой памятью имеют точность лишь от 2% до 4% и разрешение на уровне 8 разрядов, зато они работают при частотах входных сигналов до десятков мегагерц.

Главный аргумент в пользу ADC 12 состоит в том, что его точность 1% обеспечивается даже для входного напряжения, существенно меньшего пяти вольт. Действительно, шаг квантования этого АЦП составляет 1,2 мВ, в то время как у ADC 10 он равен 20 мВ (теоретическое обоснование данного факта приведено в главе 2). Следовательно, в диапазоне входных напряжений О В - 300 мВ аналого-цифровой преобразователь ADC 12 будет таким же точным, как ADC 10 в диапазоне от О В до 5 В. Заметим, что можно достичь того же результата и с помощью ADC 10, снабдив его регулируемым усилителем. Этот способ будет рассмотрен в главе 6.



За исключением ADC 11, который стоит столько же, сколько ADC 12, и имеет частоту дискретизации до 15 кГц, область применения перечисленных приборов совсем иная. Действительно, частота дискретизации сильно зависит от числа входных каналов и разрядности преобразователя. Например, имея частоту дискретизации 2 Гц при 16-разрядном и 300 Гц при 8-разрядном режиме, ADC 16 может обрабатывать лишь очень медленные процессы. Но при входном сопротивлении 1 МОм, диапазоне входного сигнала от -2,5 В до +2,5 В и возможности организации дифференциальных входов его можно применять для самых «тонких» приложений, таких как хроматография или измерение биопотенциалов.

Аналого-цифровой преобразователь ADC 100 заслуживает более подробного описания, в частности, потому, что он заметно превосходит по параметрам ADC 10 (но стоит при этом в пять раз дороже) и даже ADC 12. Очевидно, что его можно применять в более серьезных областях. Выполненный в пластиковом корпусе (рис. 3.5), который удобнее по сравнению с корпусом разъема DB25, АЦП ADC 100 имеет гораздо более сложную схему, чем его предшественники, так как его конструкция не ограничена требованиями миниатюризации.

На приведенной фотографии видно, что рядом с двумя разъемами BNC расположены два кнопочных переключателя, коммутирующих открытое и закрытое состояние входа (AC/DC). Как и любой осциллограф, прибор может работать и с открытым входом, и через конденсатор, препятствующий прохождению постоянной составляющей входного сигнала. Эта возможность, представляющая в диапазоне 0-5 В лишь относительный интерес, в данном случае полностью оправдана, поскольку ADC 100 работает как с положительными, так и с отрицательными входными напряжениями. Более того, он имеет семь пределов измерения, выбираемых программно: ±200 мВ, ±500 мВ, ±1 В, ±2 В, ±5 В, ±10 В и ±20 В. Благодаря входному сопротивлению, составляющему ровно 1 МОм на всех пределах, достаточно любого стандартного щупа с делителем 1:10 для получения дополнительного предела ±200 В.

Таким образом, АЦП ADC 100, имеющий 4096 уровней квантования (2048 для положительных и 2048 для отрицательных напряжений), обладает при измерении напряжения 25 мВ на входе той же точностью, что и ADC 10 при измерении напряжения 5 В. Лишь в редких случаях может понадобиться добавление на его входе какого-либо внешнего усилителя.



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [ 12 ] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]

0.0009