Главная  Методы условной оптимизации 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [ 81 ] [82] [83]

- (1980). «Ап upper triangular matrix method (or quadratic programming*, pre-

sented at the symposium: Nonlinear Programming 4, Madison, Wisconsin. July 1980.

- (1981). A note on quasi-Newton formulae for sparse second derivative matrices.

Math. Prog. 20, pp. 144-151.

Пауэлл и Тойнт

Powell М. J. D- and Toint P. L. (1979). On the estimation of sparse Hessian matrices, SIAM J. Numer. Anal. 16, pp. 1060-1074.


Perold A. F. (1981a). «Exploiting degeneracy in the simplex methods, in Large-Scale Linear Programming (Volume 1) (G. B. Dantzig, M. A. H. Dempster and M. J. Kallio, eds.), pp. 55-66, HASA Collaborative Proceedings Series, CP-81-51, IIASA, Laxenburg, Austria.

- (1981b). bA degeneracy-exploiting LU factorization for the simplex method*,

in Large-Scale Linear Programming (Volume 1) (G. B, Dantzig, M. A. H. Dempster and M.J. Kallio, eds.), pp. 67-96, IIASA Collaborative Proceedings Series, CP-81-51, IIASA, Laxenburg, Austria.


Perry A. (1977). A class of conjugate-gradient algorithms with a two-step variable-metric memory, Discussion Paper 269, Center (or Mathematical Studies In Economics and Management Scienca, Northwestern University.

Петере H Унлкннсои

Peters G. and Wilkinson J. H. (1970). The least-squares problem and pseudo-inverses, Computer Journal 13, pp. 309-316.


Peterson E. L. (1976), Geometric programming, SIAM Review 18, pp, 1-51.


Pietrzykowski T. (1962). «Application of the Steepest-ascent method to concave programming*, in Proceedings of the IFIPS Congress, Munich, 1962, pp. 185- 189. North-Holland, Amsterdam,

- (1959). An exact potential method for constrained maxima, SIAM J. Numer.

Anal. 6, pp. 299-304.


Polya G, (1913). Sur un algorithme toujours conveiient pour obtenlr les polynomes de meilleure approximation de Tchebycheff pour une fonction continue quel-conque, Comptes Rendus Hebdomadaires, Sccances de IAcademie des Sciences, Paris.


Paige C. C, (1980). Error analysis of some techniques for updating orthogonal decompositions. Mathematics of Computation 34, pp. 465-471.


Ryan D- M. (1971). Transformation Methods In Nonlinear Programming, Ph, D. Thesis, Australian National University,

- (1974). ((Penalty and barrier functions*, in Numerical Methods for Constrained Op-

timization (P, E. Gill and W.Murray, eds.), pp. 175-190, Academic Press. London and New York.


Reid J. K. (1975), A sparslty-«xploitlng variant o( tbe Bartels-Golub decomposition for linear programming bases, Report CSS 20, Atomic Ener:gy Research Establishment, Harwell, England.

- (1976), Fortran subroutines (or handling sparse linear programming bases. Re-

port R8269, Atomic Energy Research Establishment, Harwell, England.

Wright M. H. (1976). Numerical Methods for Nonlinearly Constrained Optimization. Ph. D. Thesis. Stanford University. California.


Robinson S. M, (1972), A quadratically convergent algorithm for general nonlinear programming problems. Math, Prog, 3, pp, 145-156,

- (1974), Perturbed Kuhn-Tucker point and rates of conveience for a class of

nonlinear programming algorithms. Math, Prog. 7, pp. 1-16.


Rosen J. B, (1960), The gradient projection method for nonlinear programming. Part 1-linear constraints, SIAM J, Appl. Math, 8, pp, 181-217.

- (I96i). The gradient projection method for nonlmear programming. Part 11-

nonlinear constraints, SIAM J, Appl, Math, 9, pp, 514-632,

- (1978), «Two-phase algorithm for nonlinear constraint problem», in Nonlinear

Programming 3 (O, L, Mangasarian, R, R, Meyer and S. M, Robinson, eds.), pp. 97-124. Academic Press, London and New York, Розен H Кройзер

Rosen J. B. and Kreuser J. (1972). «A gradient projection algorithm for nonlinear constraints*, in Numerical Methods for Non-Linear Optimization (p. A. Lootsma, ed,), pp, 297-300. Academic Press. London and New York.


Rosenbrock H. H. (I960), An automatic method for finding the greatest or leass value of a function. Computer Journal 3, pp. 175-184.


Rockalellar R. T, (1970). Convex Analysis, Princeton University Press, Princeton New Jersey, (Имеется перевод: P. Рокафеллар, Выпуклый диализ,-М,, Мир, 1973,)

- (1973а). А dual approach to solving nonlinear programming problems by uncon-

strained optimization. Math, Prog. 5, pp, 354-373,

- (1973b). The multiplier method of Hestenes and Powell applied to convex pro-

gramming. J.Opt, Th. Applies. 12, pp. 555-562.

- (1974), Augmented Lagrange multiplier functions and duality in nonconvex pro-

gramming, SIAM J. Control and Optimization 12, pp. 268-285.

Руководство-справочник no ФОРТРАН-библиотеке

NAG Fortran Library Reference Manual (Mark 8) (I98I). Numerkal Algorithms

Group Limited, Oxford, England. Руководство-справочник no оптимизационному математическому обеспечению Numerical Optimization Software Library Reference Manual (1978). Division of

Numerical Analysis and Computing, National Physical Laboratory, England.


Ruhe A. (1979). Accelerated Gauss-Newton algorithms for nonlinear least-squares problems, Nordisk Tidskr. Informations behandling (BIT) 19, pp. 356-367,

Pyxe и Ведин

Ruhe A. and Wedin P, A, (1980), Algorithms for separable nonlinear least-squares problems. SIAM Review 22, pp, 318-337,

Рэмзин и Ведин

Ramsin Н. and Wedin P. A. (1977), A comparison of some algorithms for the ncffili-near least-squares problem. Nordisk Tidskr. Informationsbehandling (BIT) 17, pp. 72-90.


Sargent R. W. (1974), «Reduced-gradlent and projection methods for nonlinear programming*, in Numerical Methods for Constrained Optimization (P. E-Gill and W. Murray, eds,), pp. 149-174, Academic Press London and New York,

Сарджент и Гаминибандара

Sargent R. W. and Gaminibandara К. (1976). Optimal deiign of plate distillation columns*, in Optimization In Action (L. C. W. Dixon, ed.). pp. 267-314. Academic Press. London and New York.

Сарджент н Муртаф

Sargent R. W. and Murtagh B. A. (1973). Projection methods lor nonlinear programming. Math. Prog. 4, pp. 245-268.


Swatin W. H. (1972). «Direct search methodss. In Numerical Methods lor Unconstrained Optimization (W. Murray, ed.), pp. 13-26, Academic Press, London and New York.

- (1974). .Constrained optimization by direct search*, in Numerical Methods lor

Constrained Optimization (P. E. Gill and W. Murray, eds.). pp. 191-217, Academic Press, London and New York.


S-sser F. S. (1981). Elimination of bounds in optimization problems bv translonninfi

variables. Math. Prog. 20, pp. 110-121. Смит, Ъскп. Гарбоу, Икебе, Клема я Молер

Smith В. Т., Boyle J. М., Garbow В. S., Ikebe Y., Klema V. С. and Moler С. В. (1974). Matrix Eigensystem Rountines-EISPACK Guide, Lecture Notes In Computer ScieiKe 6, Springer-Verlag, Berlin, Heidelberg and Mew York.


Saunders M. A. (1976). «A last, stable implementation ol the simplex method using Bartels-Golub updating*, in Sparse Matrix Computations (J. R. Bunch and D. J. Rose. eds.). pp. 213-226. Academic Press, New York.

- (1984. Private communication. Соренсен

Sorensen D. (1980a), Newtons method with a model trust region modification. Report ANL-80-106, Argonne National Laboratory, Argonne, Illinois.

- (1980b). The Q-superlinear convergence ol a coilinear scaling algorithm lor un-

constrained minimization, SlAM J. Numer. Anal. 17, pp. 84-114.


Spedicato E. (1975). Юп condition numbers ol matrices in rank two minimization algorithms*, in Towards Global Optimization (L. C. W. Dixon and G. P. Szego eds.), pp. 196-210. North-Holland. Amsterdam.

Спендли. Хекст и Химсворт

Speiidley W., Hext G. R. and Himsworth P. R. (1962). Sequential application of simplex designs in optimization and evolutionary design. Technomoetrics 4, pp. 441-461.

Стиплмен и Винарски

Stepleman R. S. and Winarsky N. D. (1979). Adaptive numerical dillerentiation. Mathematics ol Computation 33, pp. 1257-1264.


Stoer J. (1971). On the nuraericai solution of constrained least-squares problems SlAM J. Numer. Anaf. 8. pp. 382-411.

- (1975). On the convergence rate of imperfect minimization algorithms in Brov-

dens p-class. Math. Prog. 9, pp. 313-386.

- (1977). On the relation between quadratic termination and convergence properties

ol minimization algorithms, Part 1, theory. Num. Math. 28, pp. 343-366. Стренг

Strang G. (1976). Linear Algebra and its Applications, Academic Press. London and New York. (Имеетсн перевод: Г, Стренг. Линейная алгебра и ее применения.- М.: Мир. 1980.)

Stewart О. W. (1957). А modification of Davidons method to accept dillerence approximations of derivatives, J. ACM 14, pp. 72-83.

- (1973). Introduction to Matrix Computations, Academic Press, London and New

Съярле, Шульц и Варга

Ciarlet P. G., SchulU M. H. and Varga R. S, (1957). Nonlinear boundary value problems I, Num. Math. 9, pp. 394-430.

Thapa M.N. (1979). A note on sparse quasi-Newton methods. Report SOL 79-13, Department ol Operations Research, Stanlord University, California.

- (1980). Optimization of Unconstrained Functions with Sparse Hessian Matrices,

Ph. D. Thesis, Stanford University. California.

Tapfa" R. A. (1974a). Newtons metliod for problems with equality constraints. SlAM J. Numer. Anal. 11. pp. 174-196.

- (1974b). Newtons method for optimization problems with equality constraints,

SlAM j. Numer. Anal. 11, pp. 874-886.

- (1977). Diagonalizcd multiplier methods and quasi-Newton methods lor constra-

ined optimization, J. Opt. Th. Applies. 22. pp. 135-194.

- (1978) «Quasi-Newton methods lor equality constrained optimization; equiva-

lence ol existing methods and a new implementatiom, in Nonlinear Programming 3 (O. L. Mangasarian. R. R. Meyer and S. M. Robinson, eds.), pp. 125- 164, Academic Press, London and New York.

TaarTR. (1972). Depth-lirst search and linear graph algorithms, SlAM J. Comput.


Toint P. L. (1977). On sparse and symmetric matrix updating subject to a linear equation. Mathematics ol Computation 31, pp. 954-961.

- (1976). Some numerical results using a sparse matrix updating lormula in uncon-

strained optimization. Mathematics of Computation 32, pp. 839-851.

- (1979) On the superlinear convergence ol an algorithm for solving a sparse mini-

mization problem, SlAM J. Numer. Anal. 16, pp. 1036-1045.

Tornlfnj. A. (1975a). An accuracy test tor updating triangular factors. Math. Prog. Study 4, pp. 142-145.

- (1976b). On scaling linear programming problems, Math, Prog. Study 4, pp. 146-

- (1976). Robust implementation ol Lemkes method for the linear complementa-

rily problem. Report SOL 76-24, Department of Operations Research, Stanlord University.

Топкие и Вайног , , , ..

Topkis D. M. and Veinott A. F., Jr. (1967). On the convergence ol some feasible direction algorithms for nonlinear programming, SlAM J. Control 6, pp. 208- 279.

WildeD- J. (1976). Globally Optimal Design, John Wiley and Sons, New York and Toronto.


wiikinson J. H. (1963). Rounding Errors in Algebraic Processes, Notes on Applied Sciences 32, Her Majestys Stationery Office, London; Prentice-Hall, Inc. [also publisned by Englewood Clills, New Jersey!.

- (1S55). The Algebraic Eigenvalue Problem, Oxford University Press.


Уу1лкиисон и Райнх

Wilkinson J. Н. and Reinsch С (1971). Handbook for Automatic Computation, Vol.

fl, Springer-Verlag, Berlin. Heidelberg and New York. Уилсон

Wilson R. B. (1963). A Simplicial Algorithm lor Concave Programming. Ph. D. Thesis, Harvard University.


Watson G. A. (1979). The minimax solution of an over determined system of nonlinear equations. J. Inst. Matbs. Applies. 23, pp. 167-180. Фалкерсон и Вулф

Fujlierson D. R. and Wolle P. (1962). An algorithm for scaling matrices, SIAM Review 4. pp. 142-146.


Fiaccc Л. V. (1976). Sensitivity analysis for mathematical programming using penally functions. Math. Prog. 10, pp. 287-311. Фиакко к Мак-Кормик

Fiacco A. V. and McCormick G. P. (1968), Nonlinear Programming; Sequential Uncoiistrained Minimization Techniques, John Wiley and Sons, New York and Toronto. (Имеется перевод: A. Фиакко, Г. П. Мак-Кормнк. Нелинейное-программирование. Методы последовательней безусловно!! минимизации.- М.: Мир, 1972.)


Fletcher R. (1958). Generalized inverse methods for the best least-squares solution of systems of nonlinear equations. Computer Journal 10, pp. ЗШ-399.

- (1970a). A new approach to variable metric algorithms. Computer Journal 13,

pp. 317 -322.

- (1970b). «A class ol methods for nonlinear programming with termination and

convergence properties)), in Integer and Nonlinear Programming (J. Abadie, ed.), pp. 157-175. North-Holland, Amsterdam.

- (1971a). A modified Marquardt subroutine for nonlinear least squares. Report

R67S9, Atomic Energy Research Establishment, England.

- (1971b). A general quadratic programming algorithm, J. Inst, Maths. Applies.

7, pp. 76-91.

- (1972a), An algorithm for solving linearly constrained optimization problem.

Math. Prog. 2. pp. 133-165.

- (1972b). Minimizing general functions subject to linear constraints», in Numeri-

cal Methods lor Non-Linear Optimization (F. A. Lootsma, ed.), pp. 279-296, Academic Press, London and New York.

- ( 1972c). Methods for the solution cf optimization problems, Comput. Phys.

Comm. 3, pp. 159-172.

- (1973). An exact penalty function for nonlinear programming with inequalities.

Math. Prog. 5, pp. 129-150.

- (1974). «Methods related tc Lagr2r.gian functions, in Numerical Methods lor

Constrained Optimization (P. E. Gill and W. Murray, eds.), pp. 219-240, Academic Press, London and New York.

- (1976). Factorizing wmmetric indefinite matrices. Linear Algebra and its .App-

lies. 14. pp. 257-272. - (1977). eMethods for solving nonlinearly constrained optimization problems*, in The State of the Art in Numerical Analysis (D. Jacobs, ed.). PP- 365-448. Academic Press, London and New York.

- (1980). Practical Methods of Optimization, Volume 1, Unconstrained Optimiza-

tion, John Wiley and Sons, New York and Toronto. Флетчер и Джексон

Fletcher R. and Jackson M. P. (1974). Minimization of a quadratic function of many variables subject only to upper and lower bounds, J, Inst. Maths. Applies, 14. pp. 159-174.



Флетчер и Лилл

Fletcher R. and Lill S. A. (1970). «А class of methods for non-linear programming: II. computational experiences, in Nonlinear Programming (J. Б. Rosen, O. L. Mangasarian and K- Ritter, eds.), pp. 67-92, Academic Press, London and New York

Флетчер и Мак-Канн

Fletcher R. and McCann A. P. (1969). Acceleration techniques for nonlinear programming, in Optimization (R. Fletcher, ed.), pp. 37-49, Academic Press, London and New York.

Флетчер и Ривс

Fletcher R. and Reeves C. M. (1964). Function minimization by conjugate gradients. Computer Journal 7, pp. 149-164.

Флетчер и Пауэлл

Fletcher R. and Powell M. J. D. (1963). A rapidly convergent descent method for

minimization. Computer Journal 6, pp. 163-f58. --(1974). On the modification of LDL" factori:

tation 28, pp. 1067-1087.

Izations, Mathematics of Compu-

Флетчер H Фримен

Fletcher R. and Freeman T. L. (1977). A modified Newton method for minimization, J. Opt. Th. Applies. 23, pp. 357-372.

Форрест и Томлин

Forrest J. J. H. and Tomlin J. A. (1972). Updating triangular factors of the basis to maintain sparsity in the product form simplex method. Math. Prog- 2, pp. 263-278.

Форсайт и Молер

Forsythe G. E. and Moler C. B. (1967). Computer Solution of Linear Algebraic Systems, Prentice-Hall, fnc, Englewood Cliffs. New Jersey.


Fourer R. (1979). Sparse Gaussian elimination of staircase linear systems. Report SOL 79-17, Department of Operations Research, Stanford University, California.


Frisch K- R- (1955). The logarithmic potential method of convex programming. Memorandum of May 13, 1955, University Institute of Economics, Oslo, Norway.

Хаархофф и Байс

Haarhoff P. С. and Buys J. D. (f970). A new method for the optimization of a nonlinear function subject to nonlinear constraints. Computer Journal 13, pp. 178- 184.


Hayes J. G. (1970). Numerical Approximation to Functions and Data, Academic Press, London and New York.

Han S.-P. (1976). Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math. Prog. 11, pp. 263-282.

- (1977a). Dual variable metric algorithms for constrained optimization, SiAM

J. Control and Optimization 15, pp. 646-565.

- (1977b). A globally convergent method for nonfinear programming, J. Opt. Th.

Applies. 22, pp. 297-310.

- (1978a). Superlinear convergence of a minimax method, Computer Science De-

partment, Cornell University, Ithaca, New York.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [ 81 ] [82] [83]