Главная  Нелинейные системы управления 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [ 50 ] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166]

щих одинаковые значения математического ожидания и дисперсии. Штриховыми линиями на рис. 9.3 показаны значения За.,, (t) для случайных процессов.

Процесс, изображенный на рис. 9.3, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 9.3, б обладает сильной изменчивостью от сечения к сечению. Поэтому статистическая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого установить нельзя. ;

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случайного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случайного процесса.

Корреляционной функцией случайного процесса X (t) называют неслучайную функцию двух аргументов (; tz), кото рая для каждой пары произвольно выбранных значений аргументов (моментов времени) ty и t равна математическому ожиданию произведения двух случайных величин X (ty) и X {t) соответствующих сечений случайного процесса:

оо оо

RAtu t.)M[:k{t{)X(t,)] j {x,-m,{t,)}

- оо - оо

X {Xi-mx(t)}w2(xi, ti, дгг, tjdxidXi, (9.23)

где (xi, ti, Xg, 2) - двумерная плотность вероятности; X (t) = X {t) - niy. {t) - центрированный случайный процесс; {t) - математическое ожидание (среднее значение) случайного процесса.

Различные случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Разделяют стационарность в узком смысле и стационарность в широком смысле.

Стационарным в узком смысле называют случайный процесс X (t), если его п-мерные функции распределения и плотности вероятности при любом п не зависят от сдвига всех то-



чек tu tz,---, tn вдоль оси времени на одинаковую величину т, т. е.

Fnixi, tx; Xs, 4; Хп, tn)=F„(Xi, t -Ьт; Xni tn + x);

„(-1, i; X2, t, x,„ tn)=Wn{xi, ti + %; X2, h-\-x; ... ;x„, .-I-t).

Это означает, что два процесса X (t) к X (t + т) имеют одинаковые статистические свойства для любого т, т. е. статистические характеристики стационарного случайного процесса неизменны во времени.

Стационарный случайный процесс - это своего рода аналог установившегося процесса в детерминированных системах. Любой переходный процесс не является стационарным.

Стационарным в широком смысле называют случайный процесс X (О, математическое ожидание которого постоянно:

М [X {{)] = = const, (9.24)

а корреляционная функция зависит только от одной переменной - разности аргументов х = t - t, при этом корреляционную функцию обозначают

Roc (т) -?.(<1, + т) = М IX {tx) X {tx Ч- т)] = J J {xi-m(i)}{xs-m.(<i4-t)} X

- оо - оо

X пУг (Xi, Хг, т) dxj rfxs- (9.25)

Процессы, стационарные в узком смысле, обязательно стационарны и в широком смысле" однако обратное утверждение, вообще говоря, неверно.

Понятие случайного процесса, стационарного в широком смысле, вводится тогда, когда в качестве статистических характеристик случайного процесса используются только математическое ожидание и корреляционная функция. Часть.теории случайных процессов, которая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и коор реляционная функция полностью определяют его п-мерную плотность вероят-



ности. Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смысле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен, но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успевают сколько-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысле.

При изучении случайных процессов, стационарных в широком смысле, можно ограничиться рассмотрением только процессов с математическим ожиданием (средним значением), равным нулю, т. е. mjif) - О, так как случайный процесс с ненулевым математическим ожиданием представляют как сумму процесса с нулевым математическим ожиданием и постоянной неслучайной (регулярной) величиной, равной математическому ожиданию этого процесса (см. далее § 9.6).

При mjt) = О выражение для корреляционной функции

- oo - oo

X (Xi, Xg, x) dx, dxg. (9;26)

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее значение по множеству (или математическое ожидание), которое определяется на основе наблюдения над множеством реализаций случайного процесса в один и тот же момент времени. Среднее значение по множеству принято обозначать волнистой чертой над выражением, описывающим случайную функцию:

X (О - (О = М [Х (01 = I xWy (х. О dx. (9.27)

- оо

В общем случае среднее значение по множеству является функцией времени t.

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса x{f) на протя-



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [ 50 ] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166]

0.0012