Главная  Классификация протоколов сигнализации 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [ 113 ] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169]

передаваемым и принимаемым сигналами. Если это условие не выполняется, принятый сигнал может иметь сходство с эхом передаваемого сигнала и эхокомпенсатор может попытаться скомпенсировать принимаемый сигнал, поскольку спутает его с эхосигналом. Чтобы гарантировать отсутствие корреляции, на разных концах линии обычно применяют различные алгоритмы кодирования, уменьшая таким путем вероятность случайно возникающей корреляции.

Техническое преимущество выбранного в качестве стандарта ANSI двоичного кода 2В1Q является следствием меньших требований к полосе пропускания и, в результате, меньшего влияния затухания и шума. Код 2В1Q представляет пары битов (2В) как единую четырехуровневую величину (1Q). В качестве его альтернативы обычно используют трехуровневые (троичные) коды. Код ЗВ2Т представляет набор из 3 битов (ЗВ) с восемью возможными комбинациями как пару троичных величин (2Т), позволяющую составить девять комбинаций, число которых можно уменьшить до восьми, если, например, не использовать троичную пару 0-0. Подобным же образом код 4ВЗТ представляет группу из 4 битов (4В) с шестнадцатью возможными комбинациями как группу из трех троичных величин (ЗТ), допускающую 27 комбинаций. Отображение 4ВЗТ можно сократить до двух отображений ЗВ2Т, если первый из четырех отображаемых битов будет определять значение первой троичной величины (+1 или -1), а оставшиеся три бита будут отображаться согласно коду ЗВ2Т. Несмотря на это, 4ВЗТ получил большее распространение, отчасти из-за коммерческой поддержки. Резервные комбинации в кодах ЗВ2Т и 4ВЗТ можно использовать для специальных функций, для улучшения спектрального состава кодов или характеристик в присутствии шума.

Различные коды иллюстрирует рис. 2.8.

Простейший троичный код - это код с чередованием полярности импульсов (биполярный код AMI), который поочередно представляет двоичные единицы как +1 и -1. Он обладает тем недостатком, что если передается длинная строка нулей, выделение тактовой частоты может быть ухудшено. Чтобы помочь восстановлению тактовой частоты, данные обычно скремблируются, но для этого не нужны дополнительные средства, поскольку скремблирование требуется в любом случае для эхокомпенсации.



Периоды следования битов

I I I I I I I I I I I I I I I I I I I I I I I I I

Двоичный код

Код AMI

Дифференциальный двухфазный код

миллеровского типа

Код ЗВ2Т

Код4ВЗТ

Код2ВЮ

Рис. 2.8. Линейные коды для передачи по парам медных проводов

Одним из простейших кодов является двухуровневый двухфазный код. Попросту говоря, он может представить «1» положительным переходом фазы в центре битового интервала, а «О» - отрицательным переходом фазы. Чтобы избежать необходимости помечать отдельные жилы медной пары, что создает рабочие проблемы при эксплуатации, разумнее использовать дифференциальное двухфазное кодирование. При этом «1» представляется как единичная прямоугольная волна, а «О» - как половина периода прямоугольной волны с вдвое большим периодом. Здесь также имеет место пересечение нулевого уровня (переход через ноль) на каждой границе битовых интервалов.

Недостаток двухфазного кодирования состоит в необходимости иметь полосу пропускания, вдвое более широкую, чем для большинства других кодов, но это компенсируется преимуществами более простой реализации. Поскольку полоса пропускания широка и спектральная энергия на нижних частотах мала, эхосигнал быстро замирает, что позволяет реализовать эхокомпенсатор на основе запоминающего устройства. Кроме того, реализацию можно выполнить с помощью фиксированного выравнивателя, т.к. код является частично самовыравнивающимся (самовыравнивание происходит, поскольку дисперсия нулей и единиц может нейтрализоваться по длине линий, т.к. кодирование нулей как полуцикла с большой величиной третьей гармоники вырабатывает сигнал с характеристиками, подобными характеристикам единиц, кодирующихся как полный цикл).

Двухфазное кодирование тесно связано с миллеровскими кодами, которые имеют гораздо меньший спектр. Например, один из типов миллеровского кода представляет единицу как передачу в середине битового интервала, а нуль - как передачу не в середине битового интервала и вводит передачу конечного бита после двух последовательных нулей, если за ними следует третий нуль. Применение миллеровского кода вместо двухфазного создает возможность снижения спектра кода, что также упрощает реализацию, т.к. отсутствие энергии на нижних частотах опять-таки способствует быстрому замиранию эхосигналов.

По сравнению с этим, выбранный ANSI код 2B1Q имеет одну из наиболее сложных



реализации. Он требует как адаптивного выравнивания, так и эхокомпенсации, причем эхокомпенсация может требовать сочетания нескольких технических приемов, что вызвано нелинейностями и длительным временем спадания эхосигналов.

Сложность реализации стандарта ANSI ставит вопрос о том, почему был выбран только один код. Высокая стоимость и длительность разработки могли бы быть уменьшены, если бы принятый ANSI стандарт использовался на длинных линиях, а более простой подход, такой как двухфазный или с поочередным переключением направлений, - на более коротких.

Любопытно, что в этой области, как и во многих других областях разработки стандартов, из двух решений было принято более сложное, а более простое отвергнуто. Автор далек от предположения, высказанного в [78], что эксперты в области стандартизации препятствуют простым решениям только потому, что простые решения дают меньший простор для демонстрации их высокого профессионализма. Но и другого объяснения автор тоже предложить не может.

Одним из факторов, ограничивающих возможности передачи по цифровым линиям, является шум. Имеются две составляющие шума при цифровой передаче: переходное влияние на ближнем конце (NEXT) и импульсный шум. Переходное влияние вызвано несимметричными связями между разными кабельными парами. Когда связи несимметричны, сигналы от соседних пар вызывают появление разностного сигнала на двух плечах пары, поскольку на эти плечи оказывается разное влияние. Составляющая наведенного сигнала, которая продолжает распространяться по кабелю в том же направлении, что и вызвавший ее сигнал в соседней паре, называется переходным влиянием на дальнем конце (FEXT). Составляющая, распространяющаяся в обратном направлении, -это переходное влияние на ближнем конце NEXT.

При симметричной двухсторонней передаче помеха NEXT оказывает большее влияние на полезный сигнал, чем FEXT, поскольку FEXT затухает как из-за переходных связей, так и в процессе передачи по всей длине кабеля, в то время как NEXT проходит только небольшое расстояние и вновь возвращается. Помехи NEXT от разных соседних пар обычно действуют так, как если бы их фазы были случайными; следовательно, общая мощность переходного сигнала складывается как сумма мощностей всех наведенных сигналов. Это очень упрощенное представление, т.к. переходное влияние из-за несимметричности вблизи источника сигнала имеет тенденцию к большей величине вследствие меньшего затухания при передаче, а общий результат имеет тенденцию к синфазности или противофазности, в зависимости от того, какое плечо пары принимает больший сигнал. Следовательно, общий сигнал NEXT, возникающий в паре, несколько больше полученного при оценке путем сложения отдельных мощностей. Однако, даже с учетом сказанного, для большинства условий внешнего окружения шум вследствие переходного влияния не превышает импульсного шума.

Импульсный шум вызывается электромагнитными наводками, поступающими от множества различных источников. Один из этих источников - телефонные станции. Старые станции электромеханических систем могут являться самым сильным источником шумов из-за импульсов, генерируемых обмотками электромагнитных устройств, но и современные цифровые станции тоже генерируют шумы, которые влияют сильнее, чем можно было бы ожидать, по причине их синхронности с тактовыми сигналами. Импульсный шум также генерируется при включении или выключении вызывного напряжения, при переполюсовке напряжения питания линий, при замыкании шлейфа соседней линии или при передаче по ней импульсов набора номера.

Еще одним ограничивающим фактором при передаче цифровых сигналов может являться наличие на линиях пупиновских катушек, установленных ранее для улучшения характеристик передачи в речевом диапазоне. Пупиновские катушки - это небольшие индуктивности, подключенные к линии на некотором расстоянии друг от друга для того,



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [ 113 ] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169]

0.0012