Главная  Методы условной оптимизации 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [ 78 ] [79] [80] [81] [82] [83]



Abadie J. (1978). «The GRG method for nonlinear programming». in Design and Implementation of Optim[zation Software (H- J. Greenberg, ed.), pp. 335- 362. Sijthoff and Noordhoff, Netherlands.

Абадн и Гигу

Abadie J. and Guigou J. (1970). «Numerical experiments with the GRG method*, in Integer and Nonlinear Programming (J. Abadie, ed.), pp. 529-536, North-Holland, Amsterdam.

Абади и Карпентье

Abadie J. and Carpentier J. (1965). Generalisation de la methode du gradient reduit de Wolfe au cas de contraintes non-lineares, Note HR6678, Electricite de France, Pf-ris.

- (1969). «General ization of the Wclle reduced-gradient method to the case of nonlinear constraints)*, in Optimization (R. Fletcher, ed.), pp. 37-49, Academic Press, London and New York.

Авила и Конкус

Avila J. H. and Concus P. (1979). Update methods for highly structured systems of nonlinear equations; SlAM J. Numer. Anal. 16, pp. 260-269.


Avriel M. (1976). Nonlinear Programming: Analysis and Methods, Prientice-Hall, Inc., Englewood Cliffs, New Jersey.

Авриель и Дембо

Avriel М. and Dembo R. S. (eds.) (1979). Engineering Optimization, Math. Prog. Study 11.

Авриель, Рейкарт н Уайлд

Avriel М., Rijckaert М. J. and Wilde D. J. (eds.) (1973). Optimization and Design, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.


Axelsson O. (1974). On preconditioning and convergence acceleration in sparse matrix problems. Report 74-10, CERN European Organization for Nuclear Research, Geneva.

Андерсен и Блюмфилд

Ander5,.sen R. S. and Bloomfield P. (1974). Numerical differentiation procedures for

non-exact data, Num. Math. 22, pp. 157-182. Андерсон и Бьёрк

Anderson N. and BJorck A. (1973). A new high-order method of the regula falsi type for computing a root of an equation, Nordisk Tidskr. Informationsbehandling (BIT) 13. pp. 253-264.

Андерсон и Осборн

Anderson D. H. and Osborne M. R. (1977). Discrete, nonlinear approximations in polyhedral norms: a Levenberg-like algccithm, Num. Math. 28, pp. 157-170.


Apostol Т. М. (1957). Mathematical Analysis, Addison-Weslcy, Massachusetts and London.

Армстронг и Годфри

Armstrong R. D. and Godfrey J. P. (1979). Two linear programming algorithms for the discrete li norm problem, Mathematics of Computation 33, pp. 289-300.


Buys J. D. (1972). Dual Algorithms for Constrained Optimization Problems, Ph. D. Thesis, University of Leiden, Netherlands.

Байс и Гонин

Buys J. D- and Gonin R. (1977). The use ы augmented Lagrangian Functions for sensitivity analysis in nonlinear programming. Math, Prog. 12, pp. 281-284.


Buckley A. G. (1975). An alternative implementation of Goldfarbs minimization algorithm. Math. Prog. 8. pp. 207-231.

- (1978). A combined conjugate-gradient quasi-Newton minimization algorithm.

Math. Prc. 15, pp. 200-210. Балинский H Лемарешаль

Balinski M. L- and Lemarechal C. (eds.) (1978). Mathematical Programming in Use, Math. Prog. Study, 9.

Банч и Кауфман

Bunch J. R. and Kaufman L. C. (1977). Some stable methods for calculating Inertia and solving symmetric linear equations. Aiathematics of Computation 31, pp. 163-179.

--(1980). A computational method for the indefinite quadratic programming

problem. Linear Algebra and its Applies, 34, pp. 341-370.

Банч и Парлет

Bunch J. R. and Parlett B. N. (1971). Direct methods for solving symmetric indefinite systems of linear equations, SlAM, J. Numer. Anal. 8, pp. 639-655.

Bafd Y. (1976). Nonlinear Parameter Estimation. Academic Press, London and

New York. Бард и Гринштадт

Bard Y. and Greenstadt J. L. (1969). «A modified Newton method for optimization with equality constraints, in Optimization (R. Fletcher, ed.), pp. 299-306, Academic Press, London and New York.

BartdsR. H. (1971). A stabilization of the simplex method. Num. Math. 16, pp. 414-434.

- (1980). A penalty linear programming method using reduced-gradient basis-

exchange techniques. Linear Algebra and its Applies. 29, pp. 17-32.

Бартелс и Голуб

Bartels R. H. and Golub G. H. (1969). The simplex method of linear programming using the LU decomposition. Comm. .\СМ 12, pp. 266-268.

Бартелс, Голуб и Сондерс

Bartels R. Н., Golub G. H. and Saunders M. A. (1970). Numerical techniques in mathematical programming*, in Nonlinear Programming (J. B. Rosen, O- L. Mangasarian and K-Ritter, eds.), pp. 123-176, Academic Press. London and New York.

Бартелс и Конн , , , ,, „„„

Bartels R. H. and Conn A. R. (1980). Linearly constrained discrete problems, ACM Trans. Math. Software 6, pp. 594-608.

Бас и Деккер

Bus J. С. Р. and Dekker Т. J. (1975). Two efficient algorithms with guaranteed convergence for finding a zero of a function, ЛСМ Trans. Math. Software 1. pp. 330-345.

Бейкер и Венткер

Baker Т. E. and Ventker R- (1980). ((Successive linear programming in refinery logistic models*!, presented at ORSA/TIMS Joint National Meeting, Colorado Springs, ColOTadc.


Ben-fsrael A- (1967), On iterative methods For solving nonlinear least-squares problems over convex sets, Israel J. of Aiaths. 5, pp. 211-224.

Бенишу, Готье, Анже и Рнбьер

Benichou М.. Gauthier J. М., Hentges G. ard Ribiere G. (1977). The efficient solution of large-scale linear programming problems-some algorithmic techniques and computational results. Math. Prog. 13, pp. 280-322.


Byrd R. H. (1976). Local convergence of the diagonalized method of multipliers. Ph. D. Thesis. Rice University, Texas.

- (1978). Local convergence of the diagonalized method of multipliers, J. Opt.

Th. Applies. 26. pp. 485-500.


Bertsekas D. P. (1975a). Necessary and sufficient conditions for a penalty function to be exact. Math. Prog. 9, pp. 87-99.

- (1975b). Combined primal-dual and penalty methods for constrained minimiza-

tion, SIAM J. Control and Optimization 13, pp. 521-544.

- (1976a). Multiplier methods: a survey, Automatica 12, pp. 133-145.

- (1976b). On penalty and multiplier methods (or constrained minimization,

SIAM J. Control and Optimization 14, pp. 216-235.

- (1979). Convergence analysis of augmented Larangian methods», presented at

the IIASA Task Force Meeting on Generalized Lagrangians in Systems and Economic Theory», IIASA, Laxenburg, Austria (proceedings to be published in 1981).

Бест, Брауниигер, Риттер и Робинсон

Best М. J., Brauninger J., Ritter К- and Robinson S. M. (1981). A globaly and quadratically convergent algorithm for general nonlinear programming problems, Computing 26, pp. 141-163.


Belts J. T. (1970). Solving the nonlinear least-square problem, J. Opt. Th. Applies 18. pp. 4693.


Biggs M. C. (1972). «Constrained minimization using recursive equality ouadratic programming*. In Numerical Methods for Non-Linear Optimization (F. A. Loots-ma), pp. 411-428, Academic Press, London and New York.

- (1974). The Development of a Class of Constrained Optimization Algorithms and

Their Application to the Problem of Eleciric Power Scheduling. Ph. D. Thesis, University of London.

- (1975). fiConstrained minimization using recursive quadratic programming:

some alternative subproblem formulations*, in Towards Global Optimization (L. C. W. Dixon and G. P. Szego, eds.), pp. 341-349, North-Holland, Amsterdam.

Beale E. M. L. (1959). On quadratic programming. Naval Res. Logistics Quarterly 6, pp. 227-243.

- (1967a). «An introduction to Scales method of quadratic programming», in .\on-

- (1967b). «Numeric8l methods*, in Nonlinear Programming (J. Abadie, ed.),

pp. 132-205. North-Holland, Amsterdam.

- (1972). «A derivation of conjugate gradients*, in Numerical Methods for Nonli-

near Optimization (F. A. Lootsma, ed.), pp. 39-43, Academic Frp.ss London and New York.

- (1974). «A conjugate-gradient method of approximation programming*. In Opti-

mization Methods for Resource Allocation (R. W. Cottle and J. Krarup, eds.), pp. 251-277, EnHlish Universities Press.

- (19751- The current algorithmic scope of mathematical programming systmis. Math. Prog. Study 4. pp. 1-11.

- (1977). clnteger Prcramming*, in The State of the Art in Numerical Analyas

(D- Jacobs, cd.), pp. 409-448, Academic Press, London and New York.

- (1978). uNonlinear programming using a general mathematical programming

systems, in Design and Implementation of Optimization Software (H. J. Green-berg, ed.). pp. 259-279. Sijthoff and Noordhoff. Netherlands.


Bland R. G. (1977). New finite pivoting rules for the simplex method. Math, of Oper. Res. 2, pp. 103-107.


Boggs P. T. (1975). The solution of nonlinear operator equations by A-stable integration techniques. SIAM J. Numer. Anal. 8, pp. 767-785.

Боге и Толле

Boggs P. Т. and Tolle J. W. (1980). Augmented Lagrangians which are quadratic in Ihe multiplier. J. Opt. Th. Applies. 31, pp. 17-26.

Брайтон n Каллям

Brayton R. K. тй Cullum J. (1977). «OptimizaUon with the parameters constrained to a hox», in Proceedits of the IMACS International Symposium on Simulation Software and Numerical Methods for Differential Equations, IMACS.

- (1979). An algorithm for minimizing a differentiable function subject to box

constraints and errors. J. Opt. Th. Applies 29, pp. 521-558.

Браккен н Мак-Кормик

Bracken J. and McCormick G. P. (1968). Selected Applications of Nonlinear Programming, John Wiley and Sons, New York and Toronto.

Б рент

Brent R. P. (1973a). Algorithms for Minimization without Derivatives, Prentice-Hall, Inc., Enelewood Cliffs. New Jersey.

- (1973b). Some efficient algorithms for solving systems of nonlinear equations,

SIAM J. Numcr. Anal. 10, pp. 327-344.


Brodlie K. W. (19778). «Unconstrained optimization*, In The State of the Art in Numerfcfil Analysis (D. Jacobs, ed.), pp. 229-268, Academic Press, London and New York-

- (1977b), An assessment of two approaches to variable metric methods. Math.

Prog. 12, pp. 344-355.


Broyden C. G. (1965). A class of methods for solving nonlinear simultaneous equations, AUthOTiatics of Computation 19, pp. 577-593.

- (1967). Quasi-Newton methods and their application to function minimization,

Mathematics of Computation 21, pp. 368-381.

- (1970). The convergence of a class of double-rank minimization algorithms, J. Inst. Maths. Applies. 6, pp. 76-90.

1 6 № 2S84

Бройден, Деннис и Море

BroydenC. G., Dennis J. Е., Jr. and More J. J. (1973). On the local and superlineai convergence of quasi-Newton methods, J, Inst. Maths. Applies. 12, pp. 223- 245.

Бузингер H Голуб

Businger P. and Golub G. H. (1965). Linear least-squares solutions by Householder transformations, Niun. Math. 7, pp. 269-276.

Бэрроудейл и Роберте

Barrodale 1. and Roberts F. D. K. (1973). An improved algorithm lor descrete /, linear approximation, SlAM J. Numer. Anal. 10, pp. 839-848.

Бэтчелор H Бил

Batchelor A. S. J. and Beale E. M. L. (1976). «A revised method of conjugate-gradient approximation programming*, presented at the Ninth International Symposium on Mathematical Programming, Budapest.

V2nS«3ek G. (1979). Asymptotic properties ol reduction methods applying linearly equality constrained reduced problems. Report 7933, Econometric Institute. Erasmus University, Rotterdam.


Wedin P. A. (1974), On the Gauss-Newton method for the nonlinear least-squares problem. Report 23, Swedish Institute for Applied Mathematics (ITM), Stockholm.

Wolfe P. (1959). The simplex method for quadratic programming, Econometrlca 27, pp. 382-398.

- (1952). The reduced-gradient method, unpublished manuscript, the RAND Cor-


- (1963a). A technique for resolving degeneracy in linear programming, SlAM

J. Appl. Math, 11, pp. 205-211.

- (1963b). eMethods of nonlinear programming*, in Recent Advances in Mathemati-

cal Programming (J. Abadie, ed.), pp. 67-86, North-Holland, Amsterdam.

- (1966). On the convergence of gradient methods under constraints, IBM Research

report, Zurich Laboratory.

- (1967). cMethods of nonlinear programming». In Nonlinear programming (J. Aba-

die, ed.), pp. ©7-131, North-Holland, Amsterdam.

- (1969). Convergence conditions for ascent methods, SlAM Review 11, pp. 226-


- (1976). Checking the calculation of gradients. Report RC 6O07, IBM Yorktown

Heights Research Center (May 1976).

- (1980a). A bibliography for the ellipsoid algorithm, Report RC 8237, IBM York-

town Heights Research Center (April 1980).

- (1980b). The ellipsoid algorithm, in Optima, 1 (Newsletter of the Mathematical

Programming Society, June 1980).

Гарсиа Пэломарес и Мангасарьян

Garcia Palomares U, M. and Mangasarian O. L. (1976). Superlinearly convergent quasi-Newton algorithms for nonlinearly constrained optimization problems. Math. Prog. 11, pp. 1-13.

Гач и Ловас

Gacs P and Lovasz L. (1981), Khachiyans algorithm for linear programming. Math. Prog. Study 14, pp. 61-68.

Ге и Томас

Gue R. L. and Thomas M. E. (1968). Mathematical Methods in Operations Research, The Macmillan Company, New York.

Gill P. E. (1975). Numerical Methods for Large-Scale Linearly Constrained Optimization Problems, Ph. D. Thesis, University of London.

Гилл. Голуб, Мюррей и Сондерс

Gill P. е., Golub G. Н., Murray W- and Saunders M. A. (1974). Methods for modifying matrix factorizations. Mathematics of Computation 28, pp. 505-535,

Гилл H Мюррей

Gill P. E. and Murray W. (1972). Quasi-Newton methods for unconstrained optimization, J, Inst. Maths. Applies. 9, pp. 91-108.

--(1973a), The numerical solution of a problem in the calculus of variations, in

Recent Mathematical Developments in Control (D. J. Bell, ed.), pp. 97-122, Academic Press, London and New York.

--- (1973b), Quasi-Newton methods for linearly constrained optimization. Report

NAC 32, National Physical Laboratory, England.

---- (1973c). A numerically stable form of the simplex method. Linear Algebra

and its Applies. 7, pp. 99-138.

- - {1974a). Newton-type methods fcr unconstrained and linearly constrained op-

timization. Math. Prog. 28, pp. 311-350.

- - (1974b). Numerical Methods for Constrained Optimization, Academic Press,

London and New York. (Имеется перевод: Ф. Гилл н У. Мюррей. Численные методы условной оптимизации.--М.: Мир, 1977.) --(1974с). eNewton-type methods for linearly constrained optimizations, in

Numerical Methods for Constrained Optimization (P. E. Gill and W. Murray,

eds.), pp. 29-66, Academic Press, London and New York.

--(1974d). (s-Quasi-Newton methods for linearly constrained optimization», in

Numerical Methods for Constrained Optimization (P. E- Gill and W. Murray,

eds.), pp. 67-92, Academic Press, London and New York. --(1974e). Safeguarded steplength algorithms for optimization using descent

methods. Report NAC 37. National Physical Laboratory, England. --(1976a), «Nonlinear least squares and nonlinearly constrained optimization*,

in Numerical Analysis, Dundee 1975 (G. A. Watson, ed.), pp. 135-147, Sprin-

ger-Verlag Lecture Notes in Mathematics 506, Berlin. Heidelberg and New


---(1976b). Minimization subject to bounds on the variables. Report NAC 71,

National Physical Laboratory, England. --(1977a). cLinearly constrained problems including linear and quadratic pro-

grammings, in The State of the Art in Numerical Analysis (D- Jacobs, ed.),

pp. 313-363, Academic Press, London and New York. ---(1977b). The computation of Lagrange multiplier estimates for constrained

minimization. Report NAC 77, National Physical Laboratory, England. --(1978a), Algorithms for the solution of the nonlinear least-squares problem,

SlAM J. Numer. Anal. 15, pp. 977-992. --(1978b). Numerically stable methods for quadratic programming, Math- Prog.

14, pp. 349-372.

--(1978c). The design and implementation of software for unconstrained optimization, in Design and Implementation of Optimization Software (H. Greenberg, ed.), pp. 221-234, Sijthoff and Noordhoff, Netherlands.

--(1979a). Conjugate-gradient methods for brge-scale nwilinear optimization.

Report SOL 79-15. Department oF Operations Research. Stanford University. California,

--(1979b), The computation of Lagrange multiplier estimates for constrained

minimization. Math. Prog. 17, pp. 32-60.

--fl979c). ((Performance evaluation for optimization software*, in Performance

Evaluation of Numerical Software (L. D. Fosdick, ed.), pp. 221-234. North-Holland, Amsterdam.

Гилл, Мюррей и Нэш

Gill P. е.. Murray W, and Nash S. G. (1981). Newton-lype minimization methods

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [ 78 ] [79] [80] [81] [82] [83]